From Bioinformatics Core Wiki

Title Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes

Authors Anna Vlasova, Salvador Capella-Gutiérrez, Martha Rendón-Anaya, Miguel Hernández-Oñate, André E. Minoche, Ionas Erb, Francisco Câmara, Pablo Prieto-Barja, André Corvelo, Walter Sanseverino, Gastón Westergaard, Juliane C. Dohm, Georgios J. Pappas, Soledad Saburido-Alvarez, Darek Kedra, Irene Gonzalez, Luca Cozzuto, Jessica Gómez-Garrido, María A. Aguilar-Morón, Nuria Andreu, O. Mario Aguilar, Jordi Garcia-Mas, Maik Zehnsdorf, Martín P. Vázquez, Alfonso Delgado-Salinas, Luis Delaye, Ernesto Lowy, Alejandro Mentaberry, Rosana P. Vianello-Brondani, José Luís García, Tyler Alioto, Federico Sánchez, Heinz Himmelbauer, Marta Santalla, Cedric Notredame, Toni Gabaldón, Alfredo Herrera-Estrella, Roderic Guigó
Date 2016-02-25

Publisher Genome Biology
DOI 10.1186/s13059-016-0883-6
Tag DNA, Plant, Gene Duplication, Gene Expression Profiling, Genome, Plant, Genotype, Humans, Microsatellite Repeats, Phaseolus, Phylogeny, Seeds, Sequence Analysis, DNA, Transcriptome


BACKGROUND: Legumes are the third largest family of angiosperms and the second most important crop class. Legume genomes have been shaped by extensive large-scale gene duplications, including an approximately 58 million year old whole genome duplication shared by most crop legumes. RESULTS: We report the genome and the transcription atlas of coding and non-coding genes of a Mesoamerican genotype of common bean (Phaseolus vulgaris L., BAT93). Using a comprehensive phylogenomics analysis, we assessed the past and recent evolution of common bean, and traced the diversification of patterns of gene expression following duplication. We find that successive rounds of gene duplications in legumes have shaped tissue and developmental expression, leading to increased levels of specialization in larger gene families. We also find that many long non-coding RNAs are preferentially expressed in germ-line-related tissues (pods and seeds), suggesting that they play a significant role in fruit development. Our results also suggest that most bean-specific gene family expansions, including resistance gene clusters, predate the split of the Mesoamerican and Andean gene pools.

CONCLUSIONS: The genome and transcriptome data herein generated for a Mesoamerican genotype represent a counterpart to the genomic resources already available for the Andean gene pool. Altogether, this information will allow the genetic dissection of the characters involved in the domestication and adaptation of the crop, and their further implementation in breeding strategies for this important crop.

Annotation The BioCore collaborated with an international consortium to decode the genome of the Mesoamerican common bean Phaseolus vulgarism. The core contributed to the project by identifying small ncRNAs and annotating genes predicted from the genome sequences.
Bioinformatics Core Facility @ CRG — 2011-2019