

Master course

May 25,26,29,30, 2017 Sarah Bonnin – Bioinformatics facility Estefania Mancini – lab Juan Valcárcel

Introduction to Statistics and R

Module 0: Introduction to R
 May 25th, 26th, 29th and 30th

Bioinformatics room 10:00-13:00

• Module I: Descriptive Statistics & Intro to Probability

June 6th

Lectures:

Ramon y Cajal

10:00-13:00

• Module II: Statistical Inference
June 8th

Practicums:

Bioinformatics room

14:00-17:00

Module III: Statistical modeling & Regression

June 9th

Introduction to Statistics and R - Course page

https://biocore.crg.eu/wiki/

CRG Introduction to Statistics and R 2017

Outline day 1 - May 25th

- R Studio
- R basics
- Data types
- Data structures: Vectors
- Input/Output

Outline day 2 - May 26th

- Data structures:
 - Matrix
 - Data Frames
- More on Input and Output

Outline day 3 - May 29th

- Lists
- Library / packages
 - CRAN
 - Bioconductor
- (Writing functions in R)

Outline day 4 - May 30th

- Graphing in R:
 - basic graphing
 - introduction ggplot2 package

What is R?

- Used for data manipulation, calculation and graphical display.
- Open source!

https://www.r-project.org/

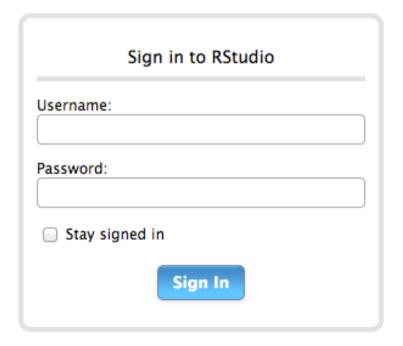
- Interactive, flexible
- Very active community of developers and users!

R studio?

Free and open source Integrated
 Development Environment for R

Available for Windows, Mac OS and Linux

Install R Studio locally

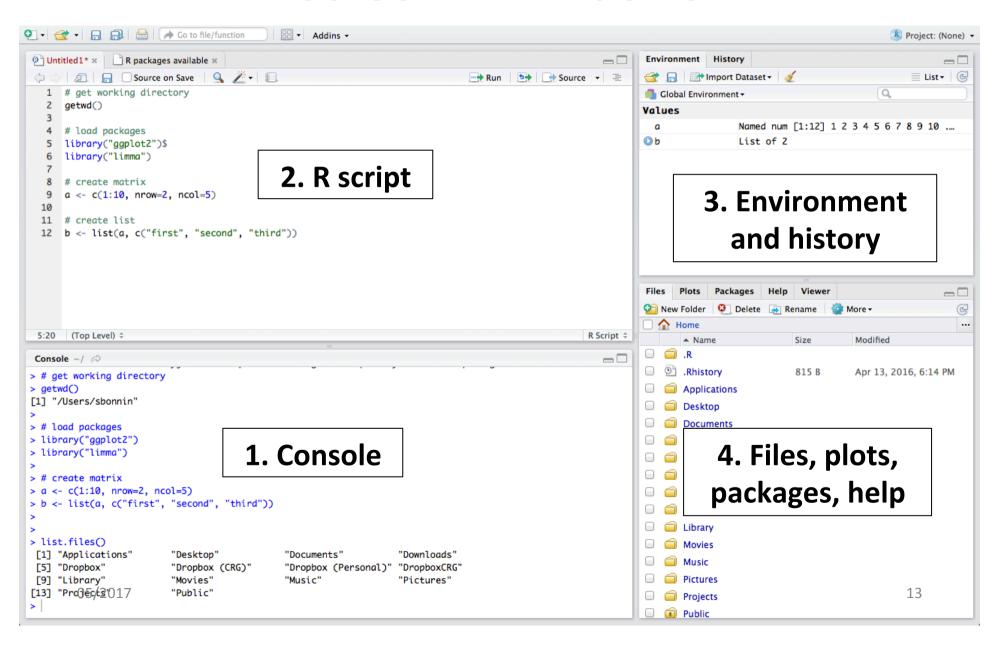

 https://www.rstudio.com/products/rstudio/ download2/

05/2017

10

Connect to R Studio on the CRG server via a web browser

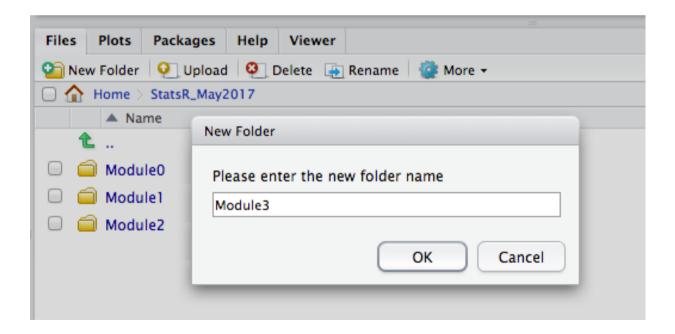
http://rstudio.linux.crg.es/



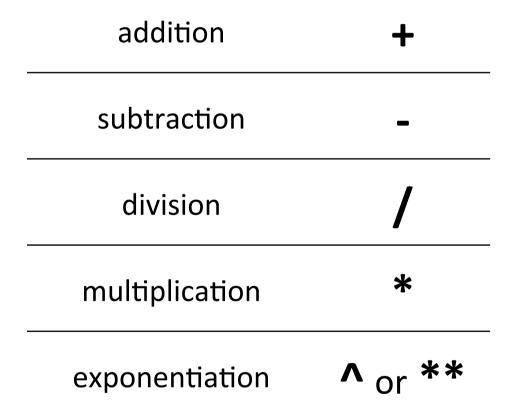
Connect to R Studio on the CRG server via a web browser

http://rstudio.linux.crg.es/

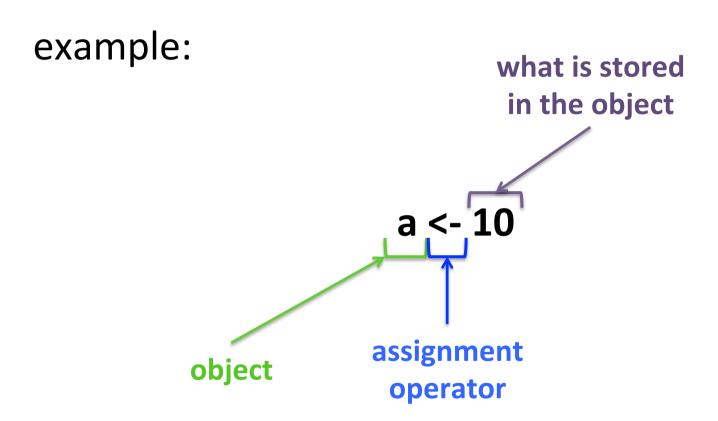
Connect with your CRG mail credentials


Screen: 4 windows

Create a directory and subdirectories for the course

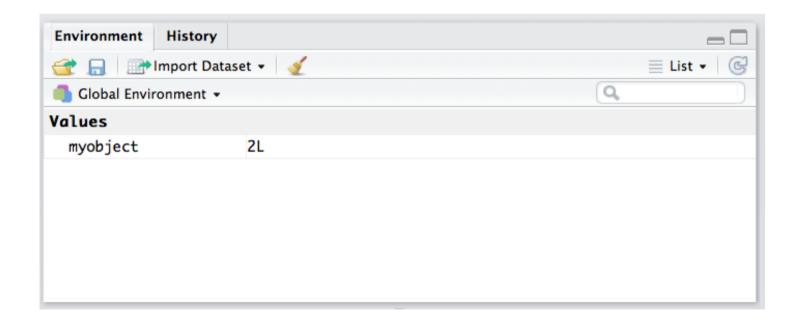

StatsR_May2017/

- |-- Module0
- -- Module1
- -- Module2
- |-- Module3



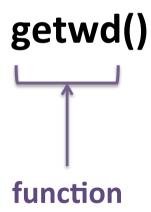
R Basics

Elementary arithmetic operators



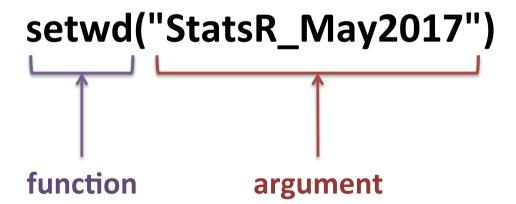
R base syntax

Objects in R Studio


The object can be found in the "Environment" tab of R Studio.

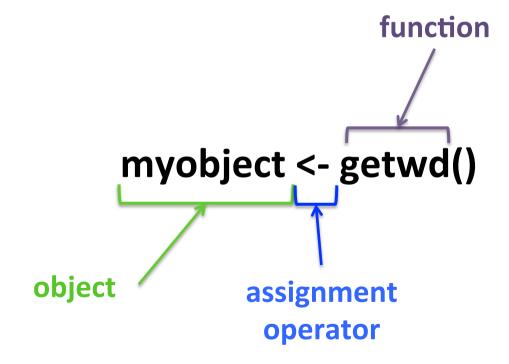
R functions

function()

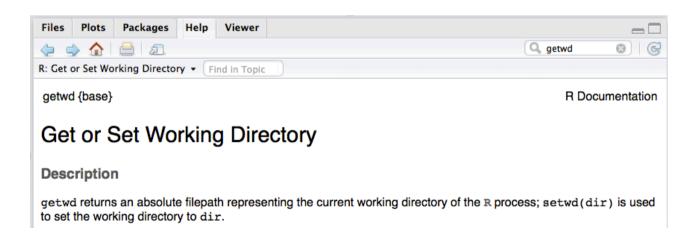

example:

R functions

function(argument)


example:

R functions


a <- function()

example:

Getting help on a function

- help(getwd)
 - ?getwd
- Tab "help" in R Studio

Example of functions

example(mean)

```
mean> x <- c(0:10, 50)
mean> xm <- mean(x)
```

R script

• Store commands in a ".R" script

 Execute commands or blocks of commands from R studio

R syntax

Case sensitive

Comment lines start with #

Commands separated by; or a new line

Data Types

Numeric

Character

Logical

Data types

Data Types

 Every object has a data type that tells what sort of value it is:

- Numeric (Numbers)
- Character (Text)
- Logical (True / False)

Data types

Data Types

```
a <- 10</li>– str(a)num 10
```

```
b <- "word"</li>- str(b)chr "word"
```

Vectors

Matrices

Data frames

List

Vectors

Matrices

Data frames

List

Vectors

Sequence of data elements of the same type

- Assignment of values to vector using the
 - c command (combining elements)

a <- **C**(1, 9, 4, 8, 0, 11, 7)

Numeric vectors

Create a sequence of consecutive numbers

$$a <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)$$

a <- 1:10

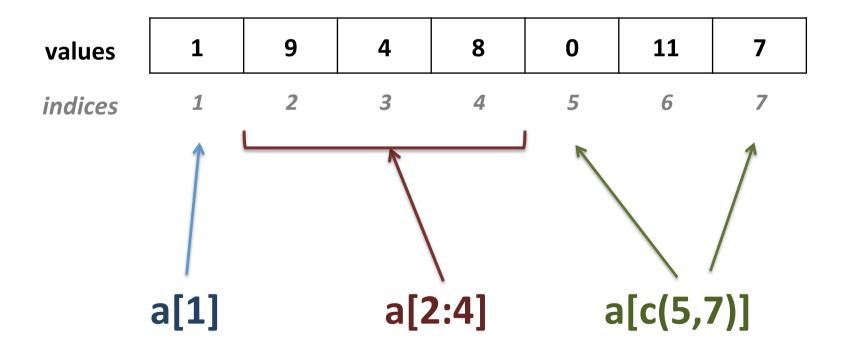
Character vectors

• each element is between (double) quotes

Vector manipulation

• Fetch elements of a vector **a**:

values 1 9 4 8 0 11 7


Vector manipulation

• Fetch elements of a vector **a**:

values	1	9	4	8	0	11	7
indices	1	2	3	4	5	6	7

Vector manipulation

• Fetch elements of a vector a:

Vector manipulation

Get length of a vector

```
a <- 1:5
[1] 5
length(a)</pre>
```

Vector manipulation

Replacing a vector's value:

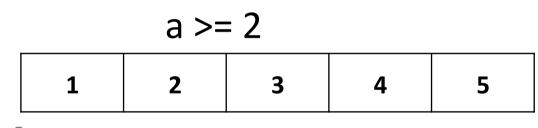
Numeric vector manipulation

Add 2 to each element of a numeric vector

Numeric vector manipulation

- a <- 1:5
- Is 2 present in a?

$$a == 2$$


[1] FALSE TRUE FALSE FALSE FALSE

• Which element of a are superior to 2

[1] FALSE FALSE TRUE TRUE TRUE

Numeric vector manipulation

- a <- 1:5
- Select elements superior or equal to 2

[1] FALSE TRUE TRUE TRUE TRUE

2 3	4	5
-----	---	---

Vectors comparison the **%in**% operator

- a <- 2:6
- b <- 4:20
- What elements of a are in b?
 a %in% b

[1] FALSE FALSE TRUE TRUE TRUE

Get the actual values of a that are in b
 a[a %in% b]

[1]456

Useful commands

Logical operators

inferior	<
inferior or equal	<=
superior	>
superior or equal	>=
equality	==
inequality	!=
not x	!x
x OR y	x y
x AND y	x & y

Useful commands

Obtaining summary statistics

average/mean	mean(x)	
median	median(x)	
minimum	min(x)	
maximum	max(x)	
variance	var(x)	
correlation	cor(x)	

Exercise 1: Numeric vector manipulation

Character vector manipulation

- b <- c("ok", "yes", "no", "ok")
- Select all the "ok" elements

[1] TRUE FALSE FALSE TRUE

ok ok

Exercise 2: Character vector manipulation

Vector manipulation

Create vector x of 1000 random numbers.
 rnorm()

 Compute the mean, median, minimum and maximum of this vector.

```
mean(), median(), min(), max().
```

- Create y, vector containing the first 100 elements of x.
- Compute summary statistics of y summary()

Input / Output

File/directory path

- The path of a file/directory is its **location** in the file system.
- Your home directory is the one that hosts your personal folder:

/nfs/users/[yourgroup]/[yourlogin]

Shortcut to your home directory: ~

File/directory path

 Path of the current directory obtained with: getwd()

[1] "/nfs/users/bi/sbonnin"

Move one directory up with: setwd("..")
 You are now in: "/nfs/users/bi/"

Go to another directory:
 setwd("/nfs/users/bi/sbonnin/test")

Read in a file into a vector

scan("file.txt")

By default, scans "double" elements.

- → can fail if the input contains characters
- scan("file.txt", what="character")
- > specify the type of data to scan!
- scan("/users/bi/sbonnin/Dir/file.txt",)
- → If file is not in the current directory:

Write a vector into a file

- write(ourfile, file="ourfile.txt")
- write(ourfile, file="ourfile.txt", ncolumns=1)
- →organizes the data in one column